sin(i)
Assuming i is the imaginary unit | Use i as instead

Input

sin(i)

Exact result

i sinh(1)

Decimal approximation

1.1752011936438014568823818505956008151557179813340958702295654130133075673... i

Property

i sinh(1) is a transcendental number

Alternate complex forms

sinh(1) (cos(π/2) + i sin(π/2))

e^((i π)/2) sinh(1)

Position in the complex plane

Position in the complex plane

Polar coordinates

r = sinh(1) (radius), θ = π/2 (angle)

Alternate form

(i (e - 1) (1 + e))/(2 e)

(i e)/2 - i/(2 e)

i (e/2 - 1/(2 e))

Continued fraction

[i; -6i, -3i, 2i, -3i, -3i, 7i, -6i, -3i, -3i, 2i, -20i, -4i, -9i, -2i, 10i, 5i, 2, ...]
(using the Hurwitz expansion)

Alternative representation

sin(i) = 1/csc(i)

sin(i) = cos(-i + π/2)

sin(i) = -cos(i + π/2)