Dodecahedron inertia tensor
Assuming "Dodecahedron" is a polyhedron | Use as instead

Input interpretation

regular dodecahedron | inertia tensor

Result

(1/300 (95 + 39 sqrt(5)) | 0 | 0
0 | 1/300 (95 + 39 sqrt(5)) | 0
0 | 0 | 1/300 (95 + 39 sqrt(5)))

Visual representation

Visual representation

Characteristic polynomial

(1/300 (95 + 39 sqrt(5)) - λ)^3

Eigenvalues

λ_1 = 1/300 (95 + 39 sqrt(5))

λ_2 = 1/300 (95 + 39 sqrt(5))

λ_3 = 1/300 (95 + 39 sqrt(5))

Eigenvectors

v_1 = (0, 0, 1)

v_2 = (0, 1, 0)

v_3 = (1, 0, 0)