Derivative

d^2/dt^2(exp(-t^2)) = e^(-t^2) (4 t^2 - 2)

On this day

d^2/dt^2(exp(-t^2)) = {(4 t^2 - 2) cos(21/5 cos(1/2 ((68921 t^3)/42875 + (5043 t^2)/2450 + (123 t)/140 - ((41 t)/35 + 1/2)^3 + π + 1/8)) cos(cosh^2(t))) exp(49/16 cos(1/2 (-(117649 t^3)/2197 + (273714 t^2)/1859 - (38/11 - (49 t)/13)^3 - (212268 t)/1573 + π + 54872/1331)) e^sinh(cos(t)) - t^2), e^(-t^2) (4 t^2 - 2)}

Plot

Plot
Plot

Expanded form

4 e^(-t^2) t^2 - 2 e^(-t^2)

Alternate form

2 e^(-t^2) (2 t^2 - 1)

Roots

t = -1/sqrt(2)
t = 1/sqrt(2)

Series expansion at t=0

-2 + 6 t^2 - 5 t^4 + O(t^5)
(Taylor series)

Indefinite integral

integral e^(-t^2) (-2 + 4 t^2) dt = -2 e^(-t^2) t + constant

Global maxima

max{e^(-t^2) (4 t^2 - 2)} = 4/e^(3/2) at t = sqrt(3/2)
max{e^(-t^2) (4 t^2 - 2)} = 4/e^(3/2) at t = -sqrt(3/2)