√(49/(121x^2))

Input

sqrt(49/(121 x^2))

Result

(7 sqrt(1/x^2))/11

Roots

(no roots exist)

Series expansion at x=0

(7 sqrt(1/x^2) x)/(11 x) + O(x^6)
(Puiseux series)

Derivative

d/dx(sqrt(49/(121 x^2))) = -(7 sqrt(1/x^2))/(11 x)

Indefinite integral

integral(7 sqrt(1/x^2))/11 dx = 7/11 sqrt(1/x^2) x log(x) + constant
(assuming a complex-valued logarithm)

Limit

lim_(x-> ± ∞) (7 sqrt(1/x^2))/11 = 0