worpitzky's identity
Assuming "worpitzky's identity" is a function property | Use as instead

Input

Worpitzky's identity

Worpitzky's identity

sum_(k=0)^n Eulerian(n, k) binomial(z + k, n) = z^n for (n element Z and n>=0 and Eulerian(n, k) = sum_(j=0)^(k + 1) (-1)^j binomial(n + 1, j) (k + 1 - j)^n)

Related Queries: