0.789*v/(1-0.211*v)
Assuming "v" is a variable | Use as instead

Input

0.789×v/(1 - 0.211 v)

Result

(0.789 v)/(1 - 0.211 v)

Plot

Plot
Plot

Expanded form

-(3.73934 v)/(v - 4.73934)

Alternate form assuming v is real

(0.789 v)/(1 - 0.211 v) + 0

Alternate form

-(3.73934 v)/(v - 4.73934)

-(789 v)/(211 v - 1000)

-17.722/(1 v - 4.73934) - 3.73934

Root

v = 0

Series expansion at v=0

0.789 v + 0.166479 v^2 + 0.0351271 v^3 + 0.00741181 v^4 + 0.00156389 v^5 + O(v^6)
(Taylor series)

Series expansion at v=∞

-3.73934 - 17.722/v - 83.9904/v^2 - 398.059/v^3 + O((1/v)^4)
(Laurent series)

Derivative

d/dv((0.789 v)/(1 - 0.211 v)) = (17.722 - 4.44089×10^-16 v)/(4.73934 - v)^2

Indefinite integral

integral(0.789 v)/(1 - 0.211 v) dv = -17.722 log(4.73934 - v) - 3.73934 v + constant
(assuming a complex-valued logarithm)

Series representation

(0.789 v)/(1 - 0.211 v) = 1 + sum_(n=1)^∞ (-1 + v)^n 1000 (211^(-1 + n) 789^(-n))
(0.789 v)/(1 - 0.211 v) = sum_(n=-∞)^∞ ( piecewise | 789 211^(-1 + n) 1000^(-n) | n>0
0 | otherwise) v^n