6÷a(b+c)

Input

6/a(b + c)

Roots

(no roots exist)

Series expansion at b=0

6/a(c) - (6 b a'(c))/a(c)^2 + (b^2 (6 a'(c)^2 - 3 a(c) a''(c)))/a(c)^3 - (b^3 (a(c)^2 a^(3)(c) + 6 a'(c)^3 - 6 a(c) a'(c) a''(c)))/a(c)^4 + (b^4 (-a(c)^3 a^(4)(c) + 6 a(c)^2 a''(c)^2 + 24 a'(c)^4 + 8 a(c)^2 a^(3)(c) a'(c) - 36 a(c) a'(c)^2 a''(c)))/(4 a(c)^5) + O(b^5)
(Taylor series)

Derivative

d/db(6/a(b + c)) = -(6 a'(b + c))/a(b + c)^2